The low-affinity complex of cytochrome c and its peroxidase

نویسندگان

  • Karen Van de Water
  • Yann G. J. Sterckx
  • Alexander N. Volkov
چکیده

The complex of yeast cytochrome c peroxidase and cytochrome c is a paradigm of the biological electron transfer (ET). Building on seven decades of research, two different models have been proposed to explain its functional redox activity. One postulates that the intermolecular ET occurs only in the dominant, high-affinity protein-protein orientation, while the other posits formation of an additional, low-affinity complex, which is much more active than the dominant one. Unlike the high-affinity interaction-extensively studied by X-ray crystallography and NMR spectroscopy-until now the binding of cytochrome c to the low-affinity site has not been observed directly, but inferred mainly from kinetics experiments. Here we report the structure of this elusive, weak protein complex and show that it consists of a dominant, inactive bound species and an ensemble of minor, ET-competent protein-protein orientations, which summarily account for the experimentally determined value of the ET rate constant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase

The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, ...

متن کامل

Preparation and biochemical characterisation of nanoconjugates of functionalized carbon nanotubes and cytochrome c

Objective(s): The present work deals with the preparation of nanobioconjugates based on the immobilization of cytochrome c (cyt c) on functionalized multi-wall carbon nanotubes (f-MWCNTs). The effect of the nanosupport and the immobilization procedure on the biochemical and structural characteristics of the immobilized protein was investigated. Methods: </strong...

متن کامل

Evaluation of cytochrome c affinity to anionic phospholipids by means of surface plasmon resonance.

We attempted to evaluate the affinity of the anionic phospholipids to cytochrome c by means of surface plasmon resonance (SPR) technique and to correlate it with the cytochrome c active site alterations and peroxidase activity. Our experiments showed a strong interdependence between the phospholipid fatty acid saturation degree, the active site structure alterations and peroxidase activity of t...

متن کامل

Cardiolipin drives cytochrome c proapoptotic and antiapoptotic actions.

Cytochrome c (cytc) is pivotal in mitochondrial respiration and apoptosis. The heme-Fe-atom of native hexacoordinated horse heart cytc (hhcytc) displays a very low reactivity toward ligands and does not exhibit catalytic properties. However, on interaction with cardiolipin (CL), hhcytc changes its tertiary structure disrupting the heme-Fe-Met80 distal bond. The CL-hhcytc complex displays a very...

متن کامل

Steady state kinetics and binding of eukaryotic cytochromes c with yeast cytochrome c peroxidase.

1. The steady state kinetics for the oxidation of ferrocytochrome c by yeast cytochrome c peroxidase are biphasic under most conditions. The same biphasic kinetics were observed for yeast iso-1, yeast iso-2, horse, tuna, and cicada cytochromes c. On changing ionic strength, buffer anions, and pH, the apparent Km values for the initial phase (Km1) varied relatively little while the corresponding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015